您现在的位置是:首页» windows系统» 30键钢琴键盘示意图,古筝常用键盘大全

30键钢琴键盘示意图,古筝常用键盘大全

2023-10-19 11:10:21
今天小编为大家分享Windows系统下载、Windows系统教程、windows相关应用程序的文章,希望能够帮助到大家!逻辑推理小测试:每张图给你60秒,能发现其中不合理的地方吗?图一:城市马路示意图,哪个地方标错了?图二:这个键盘和平时用的有什么不一样呢?图三:一堆鞋子中,有一只鞋出错了。#趣味# #游戏# #娱乐时

今天小编为大家分享Windows系统下载、Windows系统教程、windows相关应用程序的文章,希望能够帮助到大家!

逻辑推理小测试:每张图给你60秒,能发现其中不合理的地方吗?

图一:城市马路示意图,哪个地方标错了?

图二:这个键盘和平时用的有什么不一样呢?

图三:一堆鞋子中,有一只鞋出错了。

#趣味# #游戏# #娱乐时间到# #头条奇葩百科#

#2021款MacBook Pro示意图曝光# 苹果下一代MacBook Pro要取消touchbar了吗?虽然我没有Mac本,但是当第一次看到有这个玩意时候,说实话,很震撼,在键盘上加显示屏,觉得是一个非常有创意的发明,在某些操作上的确方便很多,但是,取消这个设计的话,感觉有些许的遗憾!

好家伙,广告上的手机示意图终于不是万年苹果iPhone了,之前很多都是下部圆形主页键,太明显了[吃瓜群众]

猜猜这个是哪个手机型号呢?

VR 编程环境

一个国外程序员发文,声称他都在 VR 环境编程,每周超过40小时,整个过程都戴着 VR 头盔。下面是他的编程环境示意图

他的实际编程还是在笔记本里面,使用实体键盘和鼠标,但是程序窗口会通过视频流,投射到 VR 头盔。这意味着,任何可以在笔记本上完成的工作,都可以在 VR 环境里面做。

在 VR 环境,他将5个命令行窗口并排,感觉就像坐在 IMAX 影厅编程。

VR 环境的一个好处是,可以任意变换虚拟工作地点,一会在蓝天白云的山顶,一会又在海滩上工作。

脑出血时的脑组织代谢障碍

1.能量代谢紊乱由于缺氧,脑细胞代谢紊乱,糖代谢处于无氧或乏氧状态。在正常情况下,1克分子的葡萄糖通过有氧分解,完全被氧化成CO。和水时,可产生“自由能”686千卡,其中的44%以高能磷酸键的形式储存供机体活动用,按每克分子高能磷酸键可能存能量8000卡计算,可使38克分子的二磷酸腺苷(ADP)磷酸化成38克分子的三磷酸腺苷(ATP)。如果在乏氧状态酵解,一克分子的葡萄糖降解成丙酮酸时,只产生2克分子的三磷酸腺苷。

2.蛋白质代谢素乱脑组织细胞可以通过三羧酸循环的氧化过程把葡萄糖转变成氨基酸。这些氨基酸一小部分合成蛋白质,大部分保持游离状态,而这些自由氨基酸成为脑神经细胞的主要能量来源之一。脑出血时,碳水化合物代谢障碍,其蛋白质代谢也随之紊乱,主要表现在核苷酸和氨基酸的生成减少。氨基酸的生成减少对神经功能的影响很大。

3.碳水化合物(糖)代谢紊乱:脑组织缺氧,细胞内线粒体氧化作用失去正常状态,糖代谢不能按正常供氧情况下进行氧化丙酮酸,产生CO和水;而通过无氧糖酵解还原丙酮酸成为乳酸。在正常情况下,乳酸的一小部分(占五分之一),在肝内再合成葡萄糖,而大部分(占五分之四)在呼吸链中氧化成CO2和水。

脑出血的病人由于线粒体功能失常,呼吸链的氧化磷酸化作用减弱,因而大部分的乳酸得不到降解。乳酸的产生多,利用少,产生了高乳酸血症。脑细胞间质乳酸骤集,引起脑血管的扩张造成"过度灌注”而加重脑水肿。由于乳酸增多,脑脊液的PH值下降,酸中毒使体内储的消耗,使动脉血中的乳酸盐浓度降低,脑脊液中的肌酸磷酸激酶、醛缩酶和乳酸脱氢酶增多。

4.脂肪代谢的紊乱脑出血时肾上腺素能的兴奋,脂肪大量分解为甘油三脂和游离脂肪酸。当脑水肿时脑受压发生后。磷脂的磷含量下降。在灰质中神经磷脂、脑磷脂的变化不大,而卵磷脂含量明显下降,在白质内卵磷脂和脑磷脂都明显下降。卵磷脂是细胞膜的重要组成部分。细胞膜是生命膜,包括线粒体、内质网、核膜和细胞酶系统。一旦磷脂的合成障碍,细胞膜的功能立即失常,细胞内外水与电解质的交换运转,线粒体能源的供应转换,呼吸链的功能,内质网蛋白质的合成,氨基酸的置换等一系列脑细胞代谢受到影响。

 

3.肺水肿脑血管疾病尤其是严重的脑出血常出现肺水肿。这种肺水肿是神经因素所致,主要为丘脑下部功能乱所引起。其血液动力学变化与大量注射肾上腺素相似,早期出现体循环和肺循环压力增高。这在脑出血后几秒钟至几分钟就会发生。这种全身血管收缩,血压升高的情况,虽然很快地复至接近正常,但当肺血流量增加、脑血管损伤和通透性增加的多种机制参加下、肺水种仍然发生

4.胃肠道出血脑出血后可引起一系列胃肠道的急性糜烂浅溃疡、坏死出血等病变,称应激性溃疡综合征。这些溃疡可以是单个或多发的、浅表的深层的,糜烂出血的病变则常为散在多发的。应激性溃疡引起胃肠道出血的发病机制曾有多种学说,其病机示意图如下:

5.脑疝的形成.颅腔,基本上被硬脑膜形成的大脑镰和小脑天幕分为三个小腔。颅腔和脊髓腔之间以枕骨大孔为界,在脑出血时,其出血所在小腔的压力升高,将脑组织向别的小腔或脊髓腔挤压。当被挤压的脑组织超过一定界限时,就形成脑疝。

脑疝形成有一个过程,快的1~2小时,慢者大多3~4天。据肖镇祥等认为:临床上有特殊重要意义的是小脑幕切迹疝和枕骨大孔痛。这两种脑疝发生的部位,容许脑组织疝入的裂孔都比较小,局部组织比较坚韧。疝入受压的脑组织中的中脑或延脑,都是十分重要的神经结构,一旦受到挤压,就会发生严重的后果。脑疝的发生,除了盆腔间的压力悬殊这个基本的原因外,凡是可促使颅内压进一步加重的因素如脑脊液循环通道的受阻、咳嗽、骚动等,或加大分腔间的压差的因素

如腰穿放液,都可促进脑疝的发生。脑疝不是在瞬间突然形成的,而总是有一个过程的。急性脑血管疾病的患者,以多见的半球内血肿为例,最快的从脑出血开始到小脑幕切迹疝症状的出现,也有1~2个小时,慢些的要经过3~4天。临床要经过局灶症状的加重,颅内压逐渐增高,大脑半球向对侧及向下逐渐压迫,才出现典型的大脑脚综合征。当脑疝充分形成,临床诊断已无疑问时,从病理上说,仍然有早期和晚期之分。所谓早期,是指受压的脑组织虽然因为缺血、缺氧而功能丧失,但病理上仍是可逆的。

只要颅压下降,移位的脑组织复位,脑组织的功能仍可恢复。如到晚期,脑组织疝入,而受压的时间较久,病变区已软化,坏死,就造成永久性的损害。所以,脑疝的形成过程可大致分为四个时期,即局灶高压发展期、脑疝前期(压迫邻近脑组织,移位,但未形成明确的疝入)。脑疝早期和脑疝晚期。就治疗的需要而言,我们应当在局灶高压发展和脑疝前期,即认识脑疝的发生。并采取有效的措施。最晚也要在脑疝早期给予处理。#大有学问#

上海微系统所等实现硅基异质集成的片上量子点发光

近日,中国科学院上海微系统与信息技术研究所硅光课题组研究员武爱民团队/龚谦团队与浙江大学副教授金毅课题组合作,在硅基衬底上研制出超小尺寸的包含InAs量子点的纳米共振结构,基于准BIC原理实现了O波段的片上发光。7月28日,相关研究成果以Heterogeneously integrated quantum-dot emitters efficiently driven by a quasi-BIC-supporting dielectric nanoresonator为题,在线发表在Photonics Research上,并被选为当期Highlight文章。

硅光集成技术具有大带宽、低成本、低功耗和高集成度等优势,应用于电信和数通的光互连,且在激光雷达(LiDAR)和医疗传感及智能运算领域也颇具潜力。然而,由于硅是间接带隙半导体,不能直接发光,硅基光源是行业亟待解决的关键难题。模组和系统中的光源仍利用III-V材料来实现,工业界成熟的技术主要是利用高精度封装将外部光源与硅光芯片耦合成组件。多材料体系的混合集成光源是行业发展的核心方向,以下方案备受关注:Flip-Chip混合集成、异质键合以及硅基异质外延。微系统所硅光团队深耕硅光Flip-Chip光源领域,在集成芯片上开展高性能的应用示范,近期合作提出结合异质集成和InAs量子点的亚波长尺寸片上光源实现方法。量子点是纳米尺度的零维结构,不仅对位错缺陷比较钝感,而且具备低阈值电流密度和高工作温度等潜在性能。

基于多级共振原理的单粒子共振器具有丰富的共振方式,但光场局域能力弱且Q值不够高,难以实际应用于片上激光器。准连续域束缚态(Quasi bound states in the continuum,QBICs)具有高局域性,为实现小尺寸以及阵列化的硅基发光器件开辟了新路径。合作团队通过MBE(分子束外延)生长了包含InAs量子点和应变缓冲/释放层以及GaAs包层的复合结构,利用剥离和异质键合将复合结构转移到硅基衬底上(SiO2层上),结合准BIC的物理机制,利用微纳加工工艺实现了亚波长尺度的O波段的片上发光。

科研团队将III-V量子点外延和异质键合技术相结合,消除了晶格失配的同时也避免了硅基外延的复杂多层缓冲层结构,对于大规模片上光集成更有利,具体工艺流程见图1。图2(a)为结构示意图,纳米盘结构中包括了2.2原子层厚度的InAs量子点,上下分别是2 nm和6 nm的应变缓冲层和应变释放层,还包括上下的GaAs包层和AlAs牺牲层。InAs量子点位于盘的中心位置,以匹配准BIC模式的场分布,保证光与物质充分的相互作用,该体系结构可以增强量子点与准BIC之间的耦合,从而增强光致发光;图2(b)为不同尺寸谐振器的PL谱结果,结果表明,纳米谐振器半径尺寸在420 nm时支持准BIC态,此时Q因子为68(理论值达到229),相比未达到准BIC态时最高提升了11倍,这使光致发光强度最高提升了8倍。通过提高复合外延层的质量以及优化膜转移工艺可以进一步增强发光性能。该研究为实现硅基集成的片上光源提供了颇有前景的解决方案,对于大规模的光集成提供了超小尺寸的新器件,进一步实现电致发光的片上光源则有望为硅基发光提供更有实用价值的解决方案。

图1 异质集成的InAs量子点发光器件的工艺流程

图2 异质集成量子点发光的实验结果。(a)准BIC态的片上量子点发光实验示意图,包括样品的SEM图;(b)不同半径尺寸的InAs量子点的共振器在通信波段的光致发光光谱结果;(c)不同半径的共振器对应的Q因子,蓝色虚线对应准BIC出现。

论文链接:网页链接

揭示分子筛孔道限域效应促进长链烯烃可控C-C键剪切高效制丙烯

乙烯、丙烯和丁烯等低碳烯烃是化学工业重要的平台化合物分子,在国民经济中占有重要的地位。其中,丙烯是石化行业总量第二大的重要有机化工原料。近年来,全球丙烯需求增长迅速,传统工艺生产的丙烯很难跟上需求快速增长的步伐,主要是因为聚丙烯是需求量最大的丙烯衍生物。此外,丙烯下游新的合成工艺路线的开发和深加工产品的不断延伸也导致其需求量持续增加,如丙烯法制1,4-丁二醇(BDO)、环氧丙烷与CO2反应制可降解环保型塑料聚碳酸酯等。

传统的丙烯生产途径主要包括石油催化裂化(FCC)、烃类高温蒸汽裂解、甲醇制烯烃(MTO)和丙烷脱氢(PDH)等。费托合成反应是一种可将来源广泛的含碳资源(二氧化碳、生物质、天然气、煤炭和劣质渣油等)经合成气(CO/H2)或(CO2/H2)高效催化转化为超清洁燃料和高价值化学品的重要工业过程。目前,铁基费托合成在我国已经实现了百万吨级工业化生产,产品具有高的直链α-烯烃选择性。然而,由于该反应聚合机理的限制,导致很难获得高的低碳烯烃,特别是单一特定目标产物如丙烯的高选择性。因此,根据这些长链α-烯烃分子的结构特征,选择合适的烯烃分子(戊烯和己烯)将其定向催化裂解转化为丙烯具有重要的现实意义。

尽管直链α-烯烃容易经β-断裂生成丙烯,然而在高温裂解过程中容易发生各种副反应,主要是因为反应中间体中不同位置的C-C键断裂具有相近的能垒。特别地,在常用的分子筛催化反应中,在孔道内的酸性位点上容易发生齐聚裂解、氢转移和芳构化等副反应,导致很难实现C-C键的精准断裂以获得高选择性特定烯烃目标产物,同时,大幅增加了低价值烷烃和芳烃的选择性。

针对上述问题,江南大学化工学院刘小浩教授团队与中科院武汉物理与数学研究所郑安民研究员团队合作,通过设计特定孔道和形貌结构的SAPO分子筛催化剂,结合反应分子动力学模拟深刻揭示影响C-C键可控断裂和抑制副反应发生的关键科学问题。

图1. SAPO-41分子筛中孔椭圆直形孔道限域催化1-己烯裂解高效制丙烯示意图

实验和模拟结果表明:(1)“孔道限域效应”是促进长链烯烃经单分子β-裂解获得高丙烯选择性的决定性因素。与具有交叉孔道的HZSM-5分子筛以及中孔圆形(7.3×7.3Å)直形孔道的SAPO-5分子筛相比较,合成的SAPO-41纳米片分子筛具有特殊的中孔椭圆(4.3×7.0Å)直形孔道结构能有效抑制双分子裂解、氢转移和碳沉积等副反应,以1-己烯为原料裂解可获得高转化率(~96%)、高丙烯选择性(~90%)和良好的催化稳定性(如图1所示)。(2)有趣的是,SAPO-41分子筛的稳定性,显著依赖于原料烯烃分子的碳数。确切地说,反应物烯烃分子进入孔道的速度与其裂解速度需维持动态平衡,如戊烯分子较容易进入分子筛孔道,但其更慢的裂解速度容易导致催化剂失活,然而,C6-C8烯烃分子更慢的扩散进入分子筛孔道和其快速裂解生成容易扩散离开分子筛孔道的小分子,能有效提高催化剂的稳定性。(3)1-壬烯由于其更大的分子动力学尺寸,很难扩散进入SAPO-41分子筛孔道进行裂解反应。尽管其本身具有更高的裂解活性(裂解活性与烯烃分子链长正相关),然而,其表现出很低的反应活性,这主要是因为裂解反应主要在分子筛孔口或外表面有限的酸性位点上进行。由于在分子筛孔口或外表面反应缺乏孔道限域效应,导致不期望的低碳烷烃和长链烃产物的选择性大幅增加。本工作有助于深入理解烃类分子在分子筛催化剂上的裂解反应过程,为设计构建C-C键可控高效催化转化的裂解催化剂及其应用提供理论支持。

这一成果近期以题为“Pore-Confined and Diffusion-Dependent Olefin Catalytic Cracking for the Production of Propylene over SAPO Zeolites”发表在美国化学会Industrial & Engineering Chemical Research期刊上,并被选为封面论文。江南大学化工学院硕士研究生李晚秋和博士一年级研究生李玉峰为文章的共同第一作者,中科院武汉物理与数学研究所刘志强副研究员和江南大学化工学院刘小浩教授为文章的共同通讯作者。上述工作得到国家自然科学基金(21576119, 21878127)等项目的资助。

来源:江南大学

文章链接:

网页链接

Small:基于二维金刚石的高能量密度机械能存储

2022年08月29日 by materialsviewschina

电化学电池普遍应用于储能或者便携式电子设备/系统、机器人和电动汽车中。研究表明,仅锂电池的预期市场就将在2025年达到400亿美元,这不仅会导致矿物过度使用同时将导致大量的废弃电池组,从而极大威胁环境和人类健康。因此,开发紧凑、稳定、安全和高能量密度的其他能源存储系统,不仅是社会可持续发展的需求,同时也可面向极端苛刻环境或生物环境中的高端应用提供新的供能方案,例如外太空、深海探索和生物医学应用。以弹簧为代表的机械储能存储系统是其中的一种可持续储能选项,其使用可以追溯到中石器时代的弓,也可以在机械手表或者发条玩具中找到。然而由于其低能量密度,基于弹簧的机械储能系统很少用作机械系统的主供能模块。近年来,纳米技术的进步促使大量具有优异力学性能新型材料的出现,尤其是碳纳米材料,例如碳纳米管(CNT)和石墨烯。这些新型纳米材料为构建超高能密度的储能系统提供了新的选项。作者最近的工作表明,碳纳米线束的拉伸变形可以达到约1.8 MJ/kg的质量能量密度。

鉴于此,浙江大学占海飞课题组、澳大利亚昆士兰科技大学Yuantong Gu课题组、及新加坡高性能计算中心的Gang Zhang课题组提出基于二维金刚石的纳米尺度卷尺弹簧(图1),用于机械能量的存储。研究表明,接触式的卷尺弹簧在扭转变形过程中会在层间产生极大的摩擦力,从而应力集中、减弱其能量存储上限。基于此,他们提出了基于极低界面摩擦系数固定轨道的卷尺弹簧,从而将卷尺弹簧的主要变形模式转变为拉伸和弯曲(图2)。该卷尺弹簧的质量能量密度达到了2.03 MJ/kg(564 WH/kg),是钢弹簧的能量密度的14500倍。

【图1】接触式二维金刚石卷尺弹簧的扭转变形。(a)阿基米德螺旋示意图;(b)应变能关于扭转角的函数;(c)扭转过程中卷尺弹簧的应力和应变分布;(d)扭转变形前后卷尺弹簧中的C-H键长度分布。

【图2】具有固定轨道的卷尺弹簧的变形。(a)具有固定铜螺旋轨道的卷尺弹簧模型;(b)原子构型显示了层数为5的弹簧在断裂之前的von Mises原子应变分布;(c)不同扭转角度下平均von Mises原子局部剪切应变沿圆周的分布;(d)层数分别为 1、4和5的卷尺弹簧在扭转角弧度为0.99、4.55和5.76时的原子应力分布;(e)理论模型示意图;(f)具有不同层数的卷尺弹簧的能量密度,实线代表理论预测。

该研究表明,二维纳米材料,尤其是二维范德华固体可能是构造具有高能量密度卷尺弹簧的理想候选材料。该微纳尺度的卷尺弹簧可作为另一种绿色、可持续性、高可靠性、高稳定性以及低成本的能源存储选项。当前基于不同二维纳米材料的螺旋结构或一维vdW结构的成功合成为制备该卷尺弹簧提供了强有力的支持。

论文信息:

Nanoscale Diamane Spiral Spring for High Mechanical Energy Storage

Haifei Zhan*, Bin Dong, Gang Zhang*, Chaofeng Lü*, Yuantong Gu

Small

DOI: 10.1002/smll.202203887

原文链接:

网页链接

wWw.Xtw.com.Cn系统网专业应用软件下载教程,免费windows10系统,win11,办公软件,OA办公系统,OA软件,办公自动化软件,开源系统,移动办公软件等信息,解决一体化的办公方案。

免责声明:本文中引用的各种信息及资料(包括但不限于文字、数据、图表及超链接等)均来源于该信息及资料的相关主体(包括但不限于公司、媒体、协会等机构)的官方网站或公开发表的信息。内容仅供参考使用,不准确地方联系删除处理!

联系邮箱:773537036@qq.com